LEGIBILITY ‘NOTIC

A major purpose of the Techm-
cal Information Center is to provide
the broadest dissemination pcssi-
ble of information contained In
DOE’s Research and Development
Reports to business, industry, the
academic community, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

1

(O I =

LA-UR-§@- 3872

_:s A.amos Natora Labnoralory s operated by the University of Canfornia for the Unitea Siates Department of Energy unger contract W-7405-ENG-16

LA-UR--88-3372

DEB9 002289

TITLE MENU: A FORTH MENU COMPILER

AUTHOR(S) Kenneth B. Butterfield

SUBMITTED TO Tenth Annual FORML Cofperence
Pacific Grove, California

November 2% -27, 1986

DISCLAIMER

Thie report was prepared as an uccount of work sponsored by an agency of the United States

Government. Neither the United States Government nor uny agency thereol, nor uny of their

cmployoes, maken any warranty, express or implied, or assumes any legal lishility or yesponsi-

bility for the accuracy, completeness, or usefulness of any information, appsratus, product, or N C oy
process disclosed, or represents that its use would not infringe privately owned rights. Refer- N a AT
cnce herein 1o any speafic commercial product, process, or service by trude name, trudemark, Rt VA
manufacturer, or otherwise docx not necessarily constitute or imply x endorsement, rece.n-

mendation, or favoring by the United States Government or way agency thereol The viewn

and opinions of sulhors expreasod hercin do not necessanly state or reflect those of the

United States Government or uny agency thereofl

Ry atcaptanie of Iha grticie the publisher recognizes thatthe U § Guvernment ralains a nonexCiusive 'oyally -lree hcense 1o publiah or reproduce
the pubhahad form al iy cantobaption of 10 allow others to do s0 for U S Government purposes

The (os Alamos ANatnnal Labaratnry requesis that the publisher idantily s ariicle an work perfo-med under the auspices of the U S Departmant ot t naryy

LOS AlAMOS tesiemssNaiatabesion &

wd
TIIM R N8 A neooy o et et NV L AR

NN Lre s e

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project

Los Alamos National Laboratory Research Library

Los Alamos, NM 87544

Phone: (505)667-4448

E-mail: lwwp@lanl.gov

MENU: A FORTH MENU COMPILER

Kenneth B. Butterfield

Los Alamos National Labcratory
P.0. Box 1663, MS 1562
Los Alamos, NM 87545

ABSTRACT

Menu-driven command interpreters are an effective means of controlling
por~able instrumentation where input may be limited to a hex keypad and
outnut to a few lines on a liquid crystal display. The MENU compiler
uses the name fields from the words comprising the menu options as proupt
strings. It produces compact program code, thus conserving memory that
is often limited in ROM-based systems. Input for menu function selection
is vectored to allow switching between input sources. The host system
consists of the eight-bit Motorola M68HCll processor and Max-FORTH
(FORTH-83) .

Using merus to select program control has proven to be both economical
and straightforward. Programming for portable instrumentation has, as
one of its main constraints, minimum facilities for interaction with the
operator. Other limitations might include small memory size and the
need to interrace directly with hardware. Frequently a large portion of
the program memory space is devoted to driving detectors and timers,
which can leave little space for the user interface. At Los Alamos, the
Instruments we have designed and built have included a hex keypad and an
LCD display, with lights and switches for communication with the user.
While there are no large CRT displays and ASCII keyboards, or mice, to
provide the wirndowing and point and click interactions currently in
vogue, we have found & simple menu to be very useful.

Our MENU compiler (see Appendix A) is basically a fancy CASE statement
that includes prompting for input by listing the available options and
checking the operator’s choice for validity. It is optimized to save
memory space by using the name fields of the option words for prompt
strings. A FORTH system that allows long namaes is essential to adequately
prompt the user. (A prompt string composed of only the first three letters
of a name would be ridiculous.) Range checking the operator’s choice is
included, even though it complicates the program, because portable in-
strumentation must be immune to operator error.

MENU has the usual three time frames associated with FORTH compilers,
and the compiie time frame for the compiler itself is straight forward.
The only complicatiocn occurs because MaxFORTH hides the head of SP@.

The time framo associated with compiling a menu provides the first unusual
feature. In this time frame, the <BUILDS code is activated to pu: ORTH
into the state normally associated with the colon (:) compiler. From
this point on, tokens from the {nput string are converted into compilation
addresges and stored, as usual, in the dictionary. This frame ends when

the semicolon (;) corriles a reference to EXTT. The last time frame is
the run time of a menu. At this time the DOES> code from the menu compiler
(1) determines from the list of compilation addresses the number of
options, (2) lists the name fields of the options, (3) gets an input
value, and (4) executes the selected word. The EXIT command is used by
RANGE-CHECK to determine the end of the option list. The LIST-CPTION
command uses a compilation address to point to the head of a word and
prints the name field. Once a selection has been made, the compilation
address passes to E{ECUTE in the normal manner. If an invalid selection
is made, program execution passes out of the menu with no further action
taken.

NOne useful provision in MENU 1s the ability to vector the input to
a variety of sources. We have used serial ports, key pads, and switches,
either individually or in parallel, for input. Hardware interaction such
as the timing out of a clock can be used to simulate input from the user
as well. For example, the timeout can select ‘Stop_Data_Collection’ in
a menu that also allows printing the time remaining and other data collec-
tion statistics. This type of menu permits monitoring of the collection
process while interrupt driven data routines op«rate in a "background"
mode. The input routine’s main requirement is to return a value between
0 and N, where N is the number of options. The word GETKEY in the example
(see Appendix A) shows one method for converting normal ASCII codes into
the required range. GETKEY is a very simple word that would also map @,
A...I into the range 0...9. The example also detalls the method for
defining the input vector.

Converting MENU to other FORTH systems may rzveal several system
dependencies. The most likely dependency will probably be in the choice
of words used to print the name fields of the options and the menu itself.
This choice depends on :he structure of the dictionary header associated
with a word. MaxFORTH is a target compiler system that can produce
headerless code. As pirt of this feuture, the heads produced by MaxFORTH
contain one extra pointer field (the parameter field address pointer)
that modifies the arithmetic used in moving from the compilation address
to the name field address. Octher system dependencies will probably
include name changes: Many systems use CREATE directly, rather than
<BUILDS. The word compiled by s semicolon may be called semicolon §

(:S) instead of EXIT. And the names for words used to move within a
head may vary from ore system to another.

Appendix B shows MENU {n action. Note that the name of the menu
and the names of the options available in the menu are displayed as part
of the overall operator prompt. The name of the option selected is
printed to help document program path selection. Theca names are long
because they serve as part of the user lnterface and need to be clear
and descriptive. Another aspect of using menus is {llustrated in
Print Stack, which includes the loop terminatiun as one of the available
options. One point not {llustrated in the example, but worth mentioning,
ls that a menu can serve as one option in another menu making it easy
to build a tree structure of control operations.

Thus far, we have found the menu compiler presented in this paper
to be an excellent user interface for portable instrumentation. It is
easy to use and conserves memory in systems that may have limited resour-
ces. MENU 1is probably not as user friendly as a full-windowing, pop-down
user Interface, but it certainly retains the simplicity exhibited by the

FORTH language.

APPENDIX A: MENU WORDS

VARIABLE MENU_VECTOR
HEX

! GETKEY KEY F AND ;

: KEY_INPUT
{ ' GETKEY CFA) LITERAL
MENU_VECTOR !

KEY_INPUT

VOCABULARY MENU
MENU DEFINITIONS

: LISBT_OPTION (CFA ... / List option in e menvu
2- NFA BPACE ID. ;

: RANGE_CHECK (ADD ... MAX ADD / Determine vpper limiY
DUP
BEGIN
DUP @
[' EXIT CFA 1 LITERAL
= NOT
WHILE 2+
REPEAT
BWAP

: LIST_OPTIONB8 (MAX ADD ... MAX ADD / List options)
2DUP
DO 1 OVER - 2/ CR .
[@ LIST_OPTION
2 +LOOP

: DON (MAX ADD N ... EXECUTE NTH WORD IN MENU
2¢ + BHAP
OVER - 0> (over range check)
IF
1
DUP LIBT_OPTION CR
EXECUTE
ELEBE DROP THEN

: PROMPT ." Prees key to select "

: MENU_INPUT (Get @ value from 0 to n -- vectored)
MENU_VECTOR @ EXECUTE

FORTH DEFINITIONS

: MENU (DEFINEB A MENU)
(UBE:
(MENU NAME W1 W2 W3 ... WX ;)
(vhen NAME is executed the ID's of
(WL ... WX are displayed,
(s key 18 read end the corresponding
(vord i1s executed)

{ MENU J (MENU VOCABULARY 1s hidden after this definition)

<BUILDS (the following compiles 8ra 1)
{ EC48 ,) (8P8 i1a heederleas in MAX-FORTH)
(COMPILE]l 1 (! I8 IMMEDIATE in MAX-FORTH)
DOEB>

DUP 6 - NFA (find name field - systea dependent)
CR ID. 4 BPACE8 FROMPT

RANGE_CHECK LIST_OPTIONS

MENU_INPUT

DUP 0< NOT (under range check)

IF DO_N ELBE DROP THEN

APPENDIX B: Exanple of MENU definition

: Base_l0 BABE @ DECIMAL .8 BASE ' ;
: Bease_|6 BABE @ HEX .8 BASE ' ;

: Base_2 BASE @ 2 BASE ' .8 BABE !

. Base_8 BASE @ 8 BABE ' .8 BABE ' ;
: Exit_Menu DROP -1 ,

MENU Praint_DBases
Base_2
Base_8
Base_10
Base_16
Exit_Menvu

: BABES
KEY_INPUT
BEGIN
0
Print._Bases (top 2 numbergc = base, 0)
UNTIL

(BAMPLE INTERACTION »
12 55 76 123 C8

BABES

Print_Basea Press key to select
Base_2

Base_8

Bause_10

Bease_16

Fxi1t_Menu Besse_2

S WN - O

1V000

0
11001000
100100011
1110110
1010101
10010

Print._Bases Press key to select
Base_2

Base_8

Base_10

Base_16

Exi1t_Menu Baze_8

FWRN -~ O

20

0

310

443

166

128

22

Print_Bases Press key to select
Base_2

Base_8

Base_10

Base_l16

Exit_Menu Exit_Menu

O W e—o

